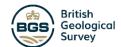


EQUIPT4RISK

Evaluation, quantification and identification of pathways and targets for the assessment of shale gas risk



ROB WARD

Project Partners

Acknowledgements: Grant Allen (WP1), Fred Worrall (WP4), Brain Baptie (WP3), Max Werner (WP3), Gus Fraser Harris (WP5), Andrew Hughes (WP5) and the rest of the project team

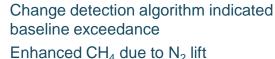
Work Packages and Science Questions

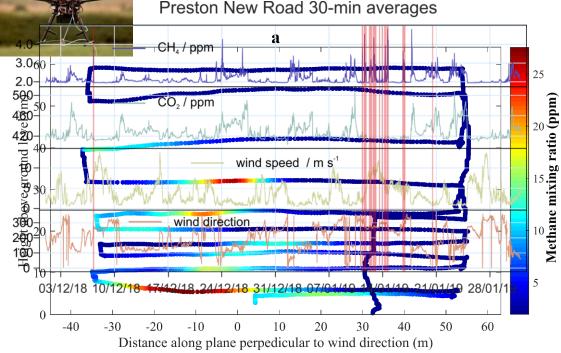
EQUIPT4RISK Air · Water · Seismic

Evaluation, quantification and identification of pathways and targets for the

assessment of shale gas risk

- What properties, parameters, and processes (geochemical/physical) are important for characterizing the key SPR linkages and combinations?
- 2) What are the actual/potential contaminant fluxes and physical (seismic) hazard characteristics (and uncertainties) and how do these evolve?
- What proxies/indicators/measures of environmental change/impact are most sensitive to the stresses induced by deep subsurface operations?
- 4) How can risks be up-scaled and integrated for a fully developed industry, to evaluate cumulative and whole lifecycle risks?


Event detection using baseline exceedance algorithm N₂ lift operation and gas release from shale gas well



- Enhanced CH₄ due to N₂ lift
- One week period in January 2019
- Max CH₄ concentration = 12.8 ppm

Shah et al., 2019. DOI: 10.5194/amt-2019-289 Shaw et al., 2019. DOI: 10.1016/j.scitotenv.2019.05.266 Shaw et al., 2020. JAWM (accepted)

Groundwater vulnerability and characterisation

BILLSBORROW

WOODSFOLD

FAULT

Roseacre

Wood

Boulder clay

Borehole

- Faults

Groundwater flows

Elswick 1

United Utilities

sources

Private Supplies

× Mercia Mudstone

Group

herwood Sandstone

lyhurst Sandstone

Groundwater flow

Preese Hall

Preston New

(Beacon Fell) Pendle Grit Outcrop

WEST

0 m

Well

-1000

Vulnerability of shallow groundwater and surface water to pollution from depth

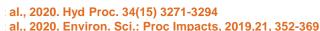
- Demonstrated fault-driven groundwater compartmentalisation
- Compartmentalisation does not affect surface waters

EAST

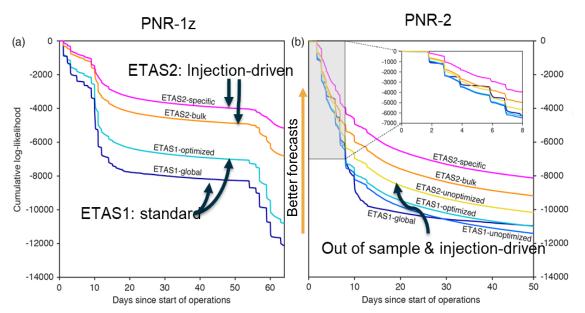
Outcrop

Upper Bowland

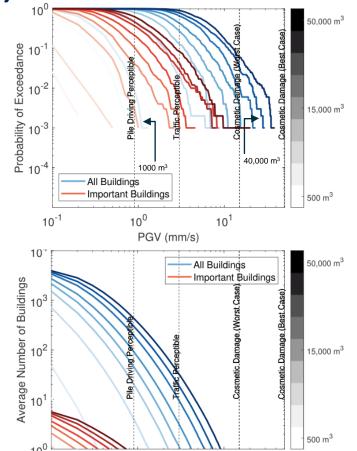
Hodder Mudstone


•

•


salinity

Probabilistic forecasting of induced seismicity using an injection-rate driven ETAS model



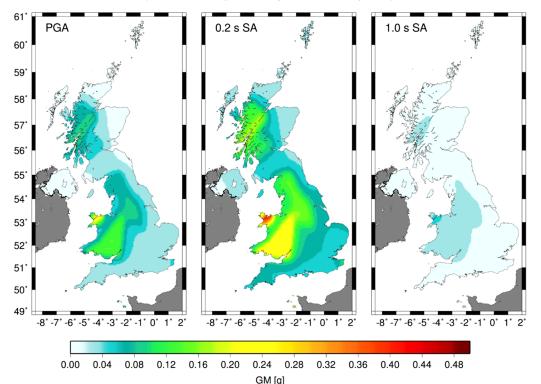
- Different ETAS models tested to reproduce the temporal evolution of PNR induced seismicity
- The best-performing ETAS is parameterized on well-specific seismicity driven by injection rates
- ETAS models provide informative timedependent forecasts for operators and decision-makers
- Results show that a model calibrated using PNR-1z data could have proved an informative forecast for PNR-2

Injection-volume-based seismic risk and nuisance

10⁰

PGV (mm/s)

10⁻¹

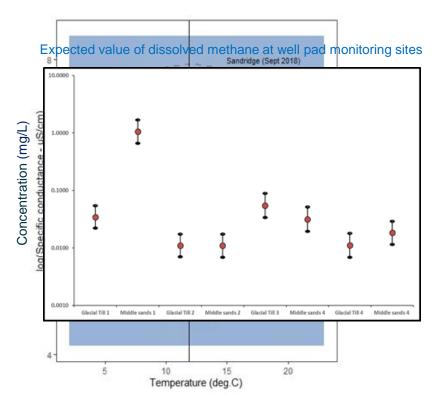

10¹

- Potential for nuisance felt ground motions linked to injection volume by combining:
 - Statistical forecast models for induced seismicity,
 - GMPEs, and
 - An exposure model of the affected area
- Results indicate:
 - Ground motion amplitude might exceed Pile Driving threshold at ≥ 1 building for injection volumes ≥ 1000 m³ (M₁ = 0.5)
 - Cosmetic damage might occur in at least one building for injection volumes $\geq 40,000 \text{ m}^3$ (Mw ≥ 2.1).
- Proposed framework can be used to control injection volume for risk mitigation and inform policy related to hydraulic-fracture induced seismicity.

WP3

Improved baseline models for background tectonic seismicity in the UK

Hazard maps for PGA, 0.2 s SA and 1.0 SA for a 2475 year return period (Exceedance probability of 2% in 50 years).


- New national seismic hazard maps for tectonic seismicity in the UK developed using a Monte Carlo-based approach
- The analysis is based on a composite earthquake catalogue consisting of data from multiple sources
- The maps show peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 s and 1.0 s for 5% damping on rock (Vs = 800 m/s) as a proportion of g and for return periods of 475, 1100 and 2475 years

Case studies, technologies and their application

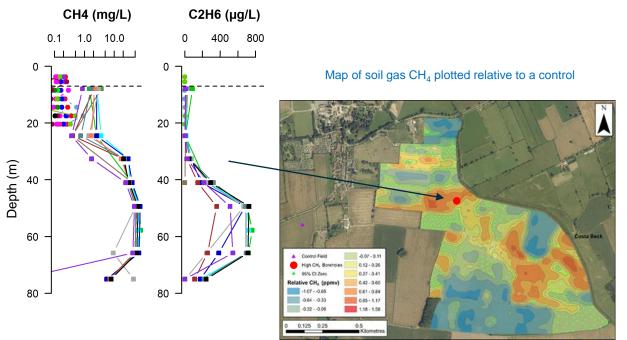
Observed vs modelled bivariate distribution for a borehole

Development of dynamic baselines

- Develop Bayesian models to combine datasets
- Predict the distribution of a monitored value to identify future anomalies
- Estimated that groundwater releases 1.65 kt CH₄/year to air (0.7-3.12 range): equivalent to 40.3 kT CO₂eq

Currently working on

- Bayesian hierarchical (bivariate) modelling, e.g.
 SEC and T to improve change detection
- Atmospheric pollutants



Case studies, technologies and their application

Are diffuse pathways for CH₄ to the surface significant?

Groundwater methane concentrations at a MLS

- Co-ordinated and integrated field campaign
- Measurement of methane flux across sub-surface/surface interfaces
 - Soil gas survey of farmland around borehole with known elevated levels of CH₄
 - Isotope study of HC reservoir gases, groundwater, soil gas and air

Cumulative Risk Concept VALE OF RICKERING High fidelity models (WP1-3) Receptor specific Air 15 years injection at site A 10 years injection at site B Threshold Stochastic Simulations Combined Hazard magnitude P(X) Risk profile at Water P(X) each receptor for Reduced ! Baseline resource Order Models Threshold development Hazard magnitude through time Time Seismic ! Baseline Threshold Multiple Hazard magnitude realisations of different Strategic Risk Disaggregation to parameter sets Critical to determine critical

Source-Pathway

combinations

mitigation

planning

Strategic Risk
Assessment and high
level mitigation based
on ISO31000

BGS

Geoscience Update

Q&A session